The conformal bootstrap: analytic vs numerical
The critical Ising model is described by a unitary conformal field theory. In two dimensions, that theory is part of a family called minimal models, which can be exactly solved in the analytic bootstrap framework of Belavin, Polyakov and Zamolodchikov. Minimal models are parametrized by two coprime integers 2 ≤ p < q, they are unitary when q = p + 1, and the Ising model is the case (p, q)=(3, 4).
These 2d bootstrap results date back to the 1980s. More recently, the bootstrap method has been successfully used in higher dimensional CFTs, such as the 3d Ising model. While the basic ideas are the same, there are important technical differences between 2d and higher d.