**Reference**

HowToGuides

Manuals

LabAlumni

DataAnalysis

Advice for...

**Admin**

analysis:course-w16:week6

Goals:

- Familiarize yourself with basic filtering concepts: frequency and phase response, difference equation, roll-off, ripple
- Learn to use MATLAB's filter design and visualization tools
- Understand the tradeoffs inherent in filtering and use this knowledge to select the appropriate filter for a particular application

Resources:

- (background) Leis Section 3.10 (difference equation)
- (background) Leis Chapter 8 (filtering; note that this mentions some concepts that are beyond the scope of this course, so skim over this)

In the previous module we saw that any signal can be decomposed into a sum of sinusoids, described by a series of magnitude and phase coefficients of a harmonic series. The Fourier transform and the algorithm that performs it can be thought of as mapping the signal from the time domain into the frequency domain. The inverse Fourier transform does the opposite.

This raises the possibility of manipulating the signal in the frequency domain, for instance by removing or amplifying certain frequencies, and then reconstructing the signal. This is an intuitive way to think about *filtering*, defined as an operation or process that removes or attenuates certain features from a signal. This page has a nice graphical illustration of Fourier filtering.

Filtering is of central importance in neuroscience, both as an analysis tool (especially when dealing with time series data) and as a model for operations performed by neural circuits at multiple levels. For instance, the classical receptive fields of V1 neurons can be thought of as filters operating on visual input, and the characteristic time course of postsynaptic potentials imposes limits on how fast signals can be transmitted. Here, we focus on some basic data analysis applications.

Filtering is a complex topic in signal processing, with a huge literature, much current research, and many mathematical derivations beyond the scope of this course. However, it is important to be familiar with some of the fundamentals so you can better place descriptions you encounter in the literature, as well as be aware of issues relating to your own analyses. Thus, we will begin with a brief conceptual overview.

Removing specific frequencies in the Fourier domain is an intuitive way to think about filtering, but this is not how filters are generally implemented. (There are several reasons for this, such as the difficulty in filtering real-time as samples are coming in.) Instead, digital filtering is typically accomplished with a *difference equation* of the form:

This equation describes how to compute sample *n* of the filtered signal *y* from the original signal *x*. The value of *y(n)* in general can be a function of an arbitrary number of past samples (-1, -2, etc.) of the original signal *x*, as well as of *y* itself.

The coefficients `b`

and `a`

fully define the filter. Notice that a filter with only `b`

coefficients depends only on the original signal *x*; that is, there are no *feedback* terms taken from the filtered signal *y*. The `a`

coefficients describe the feedback components. This distinction is the basis for the commonly used terms “FIR” (Finite Impulse Response; only `b`

components) and “IIR” (Infinite Impulse Response, `a`

components) to describe a filter. The behavior of IIR filters can be much more complex because of this feedback.

Another useful term to be aware of is the *order* of a filter: this simply refers to the maximum number of samples back it looks. This is equivalent to the maximum number of coefficients `a`

and `b`

the filter has; `a(0)`

and `b(0)`

always need to be defined (`a(0)`

is implicit on the left side in front of `y(n)`

, often omitted because it is generally 1) as well as at least one `a`

or `b`

for each sample back up to the maximum.

(Technical note: the difference equation can be related to the frequency domain through the Z-transform; it is not necessary to understand this, but if you are curious, the Leis book has an explanation.)

An example of a simple filtering operation is to compute a running average. Looking at the difference equation above, we see we can accomplish this using `b`

coefficients only. How many coefficients we use will determine the size of the window (in samples) that we average over; the magnitude of the coefficients should be set so that we in fact get the mean, and not for instance the sum.

So, to compute the running mean over four samples, we want:

Using `filter()`

, we would simply do

a = 1; % a_0 is the (hidden) coefficient on the left side, in front of y(n) b = [1/4 1/4 1/4 1/4]; % four b's of 1/4 each so we get the mean y = filter(b,a,x); % x is the original signal, y the filtered version

Of course, this won't work because we don't have our input signal `x`

defined yet. As a quick illustration (following this MATLAB page), we can do:

load count.dat; x = count(:,1); t = 1:length(x); plot(t,x,'-.',t,y,'-'), grid on legend('Original','Filtered',2)

Combining the above pieces should give:

The filtered signal looks roughly as expected – a nicely smoothed version of the original – but a few things are worth noting. Look at the first sample of the filtered signal: it equals `x(1)/4`

, which means that any values of `x`

which we did not have were assumed to be zero. This is an example of an “edge effect”; in general we don't really think the signal we didn't sample is truly zero, but this is `filter()`

's implicit, default assumption.

Another property of this filtered signal is that it is *phase-shifted* to the right; this of course arises because our `y(n)`

is based only on past samples, not on the future. This is a key issue for neuroscience data analysis and we will return to it below.

Computing a running mean has its uses, but for neural data we are typically interested in other applications of filtering. The canonical filter types, illustrated below, are the *lowpass* filter (pass low frequencies, suppress high frequencies), *highpass* filter (the reverse), *bandpass* filter (only pass frequencies within a certain range) and *notch* filter (suppress frequencies within a narrow range):

Note that these illustrations are in the frequency domain: some frequencies are unchanged (0 dB; recall that the decibel is a common unit of signal power), while others are attenuated. The -3dB point is a common reference and corresponds to a 50% reduction in signal power (recall that dB is a log scale).

How do we know what values of `b`

and `a`

will accomplish these filtering operations? Can the *optimal* `b`

and `a`

for a given application be found? These are questions about *filter design*, a field for which MATLAB (in particular the Signal Processing Toolbox) provides many useful tools.

As may be expected from your experience with windowing and spectral leakage in the previous module, there is no ideal filter that completely rejects all unwanted frequencies while leaving all desired frequencies intact. Rather, different filters make different tradeoffs in terms of their frequency and phase response.

For instance, a *Butterworth* filter has a maximally flat frequency response in the passband. However, its *rolloff* (the transition from passband to stopband) is not as steep as that of *Chebyshev* filters. In turn, Chebychev filters experience *ripple* (some distortion) in either the passband or the stopband and thus are not as flat as Butterworth filters. Many other filters, with different properties, exist. Thus, it becomes important to select the right filter for your application. To help with this process, MATLAB has a useful tool that provides the key properties of a given filter at a glance.

Let's start with designing a basic Butterworth bandpass filter. The `help`

for `butter()`

says:

>> help butter butter Butterworth digital and analog filter design. [B,A] = butter(N,Wn) designs an Nth order lowpass digital Butterworth filter and returns the filter coefficients in length N+1 vectors B (numerator) and A (denominator). The coefficients are listed in descending powers of z. The cutoff frequency Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate. If Wn is a two-element vector, Wn = [W1 W2], butter returns an order 2N bandpass filter with passband W1 < W < W2.

So, `butter()`

computes for us the coefficients `a`

and `b`

of the difference equation. The “descending powers of z” referred to correspond to samples further in the past: z^0 is the current sample, z^-1 the previous one, et cetera. This is Z-transform stuff you don't need to understand; for now it's sufficient to know that `butter()`

returns the `a`

and `b`

coefficients in the order we expect. Likewise, the numerator and denominator refer to where `a`

and `b`

would end up if we wrote out the “transfer function” for the filter; no need to worry about this either.

Note that we need to specify the cutoff frequencies as numbers between 0 and 1, where 1 correponds to the Nyquist frequency of our data. So we cannot directly say we want the cutoff to be e.g. 250Hz, we have to normalize by `Fs/2`

.

☛ Generate a 10-second long white noise signal, sampled at 500Hz. Filter it using a bandpass Butterworth filter between 50 and 100 Hz of order 4. Plot the Welch spectrum, in dB, of the original and filtered signal, using a 512-sample Hanning window. Evaluate the FFT over 2^14 points.

Your code should look something like:

% set up time axis Fs = ... tvec = ... % generate white noise x = rand(...) % get PSD [Porig,Forig] = pwelch(x, ...) % design filter W1 = ... W2 = ... [b,a] = butter(4,[W1 W2]); y = filter(...) % get PSD [Pfilt,Ffilt] = pwelch(y, ...) % plot the resulting PSDs subplot(121) plot(... 10*log10(..));

When done correctly, the resulting PSDs should be similar to these:

As you can see, our filter is doing something, but it's also clear that it's not perfect. Frequencies outside the passband still get passed to some degree, and if you look carefully (`grid on`

can help), you can see that frequencies in the passband but close to the rolloff frequencies are slightly attenuated already.

Of course, in general we are not interested in white noise, but it is a useful testbed to gauge the properties of a filter. Because we know white noise has a flat frequency spectrum, we can see at a glance which frequencies are attenuated after filtering.

One way to improve is to ask MATLAB to suggest an appropriate filter order for us:

Wp = [ 50 100] * 2 / Fs; % passband - between 50 and 100 Hz Ws = [ 45 105] * 2 / Fs; % stopband [N,Wn] = buttord( Wp, Ws, 3, 20); % determine filter parameters [b2,a2] = butter(N,Wn); % builds filter

The `buttord()`

function takes the filter specifications and returns a suggested filter order (`N`

) and new frequency cutoffs `Wn`

to feed to `butter()`

. The way we specify this is to say that we require a minimum level of attenuation in the stopband (in this case, 20dB) and we are willing to tolerate a certain amount of distortion (“ripple”) in the passband (in this case, 3dB).

As it turns out, for this filter, `buttord()`

suggests order 15! This is quite a difference from the 4th order filter we implemented above. Let's see how our new filter compares. Happily, we don't need to keep filtering white noise in order to see the frequency response of a filter, because MATLAB provides a nice tool:

fvtool(b,a,b2,a2)

You should get:

Notice how our new filter (in green) is much more effective than the previous one. It has sharper roll-off and better attenuation in the stopband. The units on the frequency axis are fractions of `Fs/2`

, so 0.2 corresponds to 50Hz as expected.

☛ What happens if you get greedy and try to have a stopband of [48 102] as an input to `buttord()`

?

Let's try a different filter, a Chebyshev Type I. With this one, we can be greedy:

Wp = [ 50 100] * 2 / Fs; Ws = [ 48 102] * 2 / Fs; [N,Wn] = cheb1ord( Wp, Ws, 3, 20); [b_c1,a_c1] = cheby1(N,0.5,Wn); fvtool(b2,a2,b_c1,a_c1)

Note that we use the same workflow of having MATLAB suggest a filter order and passband based on our specifications. The `cheby1()`

function needs one additional input argument compared to `butter()`

; this relates to the “ripple” that is visible in the frequency response:

As you can see, our Chebyshev filter (in green) has a sharper rolloff, but at a cost: the frequency response in our passband is now no longer flat, and has a “ripple” instead. There is also a Chebyshev Type II filter, which has a flat passband response but a ripple in the stopband, but its rolloff tends to be less sharp so is less commonly used.

Let's apply our filter to a more realistic signal:

Fs = 500; dt = 1./Fs; t = [0 10]; tvec = t(1):dt:t(2)-dt; s1 = sin(2*pi*80*tvec+pi/6); s2 = sin(2*pi*40*tvec); s = s1 + s2; sf = filter(b_c1,a_c1,s); plot(tvec,s,'k',tvec,sf,'r--'); hold on; legend({'original','filtered'}); xlim([0 0.2]);

The result:

The filter was effective in removing the lower-frequency (40Hz) component, with only the 80Hz oscillation remaining. However, the *phase* of the signal has clearly changed also, by what appears like 180 degrees – the faster-oscillation peaks in the original trace now are closely aligned with the troughs in the filtered trace. As was the case in our first filtering example (the moving average filter above), the filtered signal appears delayed relative to the original.

Clearly, such phase shifts can be devastating for the analysis of neural data. If features of a LFP are delayed because of filtering, this may obscure relationships between the LFP and behavioral or neural events. In addition, any analysis that relies on knowing the phase of a LFP, such as theta phase precession, or cross-frequency coupling, will be affected as well. In general, the *phase response* is an important characteristic of any filter, and indeed `fvtool`

can display it.

☛ Run `fvtool`

again on the Butterworth and Chebyshev filters above, and now select the Phase Response button in the top left of the window.

Notice that the phase response is not constant but in fact depends on the input frequency. This makes it very difficult to correct for such phase shifts. For neural data, where even small phase shifts can be problematic, we therefore take an alternative approach: we filter the signal forwards and backwards, such that the net phase response is zero: no phase shift! This is accomplished using the `filtfilt()`

function:

sf = filtfilt(b_c1,a_c1,s); plot(tvec,s,'k',tvec,sf,'r--'); hold on; legend({'original','filtered'}); xlim([0 0.2]);

☛ Verify that there is no longer any detectable phase shift.

So far so good, but what are the consequences for the frequency response of doing this?

%% compare freq responses Fs = 500; dt = 1./Fs; t = [0 10]; tvec = t(1):dt:t(2)-dt; x = rand(size(tvec)); % white noise input [P,F] = pwelch(x,hanning(512),256,2^14,Fs); y1 = filter(b_c1,a_c1,x); [P1,F1] = pwelch(y1,hanning(512),256,2^14,Fs); y2 = filtfilt(b_c1,a_c1,x); [P2,F2] = pwelch(y2,hanning(512),256,2^14,Fs); plot(F,10*log10(P),F,10*log10(P1),F,10*log10(P2)); legend({'original','filter','filtfilt'});

This gives:

As is often the case, the output from `filtfilt()`

actually has a steeper rolloff than that from `filter()`

. This is because we are effectively filtering twice, an effect that can be approximated by increasing order of the filter (if you were to filter it only once). `filtfilt()`

tends to be more robust, but it is always a good idea to check your filter on white noise if you have not used it before.

☛ (test your knowledge) Module 4 introduced the importance of using an anti-aliasing filter when (sub)sampling, and recommended using the `decimate()`

function because it has exactly such a filter built-in (as opposed to `downsample()`

which does not). However, as you have seen in this module, filtering can produce phase shifts, which could lead to serious artifacts when e.g. relating spike or event times to field potential phases. Find out if the anti-aliasing filter in `decimate()`

produces phase shifts.

Let's try to design a *notch* filter to remove 60Hz line noise, using the familiar method:

[b,a] = butter(10, [59 61] * 2 / Fs, 'stop'); fvtool(b,a);

As you can see, the frequency response doesn't look good.

☛ Try some different filter orders and see if you can get the desired notch shape (i.e. attenuation at 60Hz, no attenuation everywhere else).

This issue is similar to what we encountered when trying to get a sharper rolloff for our bandpass filter. In that case we fixed things by going to a Chebyshev filter. Another method is the following:

[z,p,k] = butter(10, [59 61] * 2 / Fs, 'stop'); % note, we ask for 3 outputs instead of 2 [sos,g] = zp2sos(z,p,k); % convert to SOS format h = dfilt.df2sos(sos,g); % create filter object fvtool(h);

Now we have a good looking notch filter. This so-called “second-order section” format is more numerically precise than the standard difference equation `[b,a]`

format. When dealing with higher order filters it can make a difference!

☛ Test this nice notch filter on white noise using `filtfilt()`

.

Movement artifacts arising from EMG (electrical activity generated by muscles) are common when recording neural signals from behaving subjects. Ideally, these are removed by correct referencing, but this is not always possible. Chewing artifacts, when a rat consumes food pellets, can be particularly pernicious; as can eyeblinks when recording scalp EEG.

As an example:

%% cd to R016-2012-10-08 folder first cfg = []; cfg.fc = {'R016-2012-10-08-CSC02b.ncs'}; csc = LoadCSC(cfg); cscR = restrict(csc,1270,1272); plot(cscR.tvec,cscR.data)

This is a piece of LFP recorded as this rat was eating. Note the characteristic rhythmic pattern of high-frequency oscillation events that occur approximately 4 times each second:

We could try to *remove* these events from the signal and then pretend they were never there in further analysis, but a more conservative approach is simply to detect them and store the corresponding times so that we can exclude them from subsequent analysis.

Let's take a guess at a frequency band that may be able to detect these events:

Fs = cscR.cfg.hdr{1}.SamplingFrequency; Wp = [ 180 220] * 2 / Fs; Ws = [ 178 222] * 2 / Fs; [N,Wn] = cheb1ord( Wp, Ws, 3, 20); % determine filter parameters [b_c1,a_c1] = cheby1(N,0.5,Wn); % builds filter %fvtool(b_c1,a_c1); % remember to check your filter! y = filtfilt(b_c1,a_c1,cscR.data); plot(cscR.tvec,cscR.data,'b',cscR.tvec,y,'r');

It looks like this filter is picking up something from the chewing events. But we are not interested in a chewing-band signal per se; we want to use it to detect the presence of chewing events. Thus, we can convert the oscillating signal into an unsigned quantity, signal *power*:

`chew_power = y.^2;`

Plot this *instantaneous signal power* and notice this is a pretty variable quantity. This is where our moving average filter comes in handy, but we can also use `medfilt1()`

, a median filter which is a bit more robust to outliers:

chew_power = y.^2; chew_power_filtered = medfilt1(chew_power,101); % filter window is specified in samples, so this is ~50ms [h1 h2] = plotyy(cscR.tvec,cscR.data,cscR.tvec,chew_power_filtered);

The resulting “chew-band” signal power estimate is well-behaved and matches the chewing events nicely:

update image file above to reflect use of plotyy()

The filtered chewband power can now be used for a simple thresholding operation to decide if a chewing event is present or not. By changing the filter properties, the same approach can be used to obtain a time series of any frequency band of interest, to examine for instance the relationship between running speed and theta power, or between gamma events and reward anticipation.

This approach illustrates that often we don't really want to *replace* the original signal with a filtered version. Rather, the same original signal is used to generate multiple different filtered signals, used together or separately to explore distinct analysis questions and to make include/exclude decisions.

Recall the rasterplot + LFP visualizations you made in Module 3. The piece of data you zoomed in on contained sharp wave-ripple complexes (SWRs) recorded from the dorsal CA1 area of the hippocampus, manifest as brief (~200ms) high-frequency oscillation in the LFP (the “ripple”) which often rides on top of a slower deflection (the “sharp wave”), like this:

These LFP events are associated with the synchronous activation of many cells, which is often structured to form “replay”, the sequential activation of place cells corresponding to a coherent spatial trajectory.

Studies of replay start with the detection of potential replay events. To do this, we need to isolate those features of the LFP that are associated with SWR events and distinguish them from those resulting from artifacts associated with chewing, grooming, et cetera.

Based on the filtering concepts above, we can implement a workflow for detecting SWR events, as follows (note, you may need to do a `git pull`

to make this work):

%% some hippocampus data cd('C:\data\R042-2013-08-18_recording'); cfg = []; cfg.fc = {'R042-2013-08-18-CSC03a.ncs'}; lfp = LoadCSC(cfg); %% filter in SWR band cfg = []; cfg.f = [140 220]; cfg.display_filter = 0; SWRf = FilterLFP(cfg,lfp); %% obtain power and z-score it SWRp = LFPpower([],SWRf); SWRp_z = zscore_tsd(SWRp); %% detect events cfg = []; cfg.method = 'raw'; cfg.threshold = 3; cfg.operation = '>'; % return intervals where threshold is exceeded cfg.merge_thr = 0.05; % merge events closer than this cfg.minlen = 0.05; % minimum interval length SWR_evt = TSDtoIV(cfg,SWRp_z); %% to each event, add a field with the max z-scored power (for later selection) cfg = []; cfg.method = 'max'; % 'min', 'mean' cfg.label = 'maxSWRp'; % what to call this in iv, i.e. usr.label SWR_evt = AddTSDtoIV(cfg,SWR_evt,SWRp_z); %% select only those events of >5 z-scored power cfg = []; cfg.operation = '>'; cfg.threshold = 5; SWR_evt = SelectIV(cfg,SWR_evt,'maxSWRp'); %% plot events in highlighted on top of full lfp PlotTSDfromIV([],SWR_evt,lfp); %% ..or the events alone (fixed 200ms window centered at event time) close all; cfg = []; cfg.display = 'iv'; cfg.mode = 'center'; cfg.fgcol = 'k'; PlotTSDfromIV(cfg,SWR_evt,lfp); %% ..hold on (highlight edges of event on top of previous plot) cfg = []; cfg.display = 'iv'; cfg.fgcol = 'r'; PlotTSDfromIV(cfg,SWR_evt,lfp);

Try it, and inspect the results. Make sure you understand what each step of the above workflow accomplishes; the functions used are fairly general-purpose, so it is useful to be aware of them. Notice also that this is a relatively well-organized piece of code, with clearly defined parameters (in the `cfg`

) which informs a conceptually clear analysis step.

☛ What strategies can you think of to evaluate the accuracy and precision of the above detection? How might the workflow be improved?

★ Does your own data analysis include applications of filtering? Start by making an inventory of all these applications – based on the module discussing aliasing, you should not be surprised that any data acquisition system for sampled signals will have some sort of filter set up by default. There will likely be more filters further in your data analysis pipeline. Identify one such filter that seems particularly relevant for your scientific questions, and investigate how the output of that analysis stage depends on the properties of the filter. You might start, for instance, by evaluating the performance of the existing filter. Can you find cases where it fails? What will you try to improve it, and how will you evaluate performance?

★ The metadata for recording sessions from rats R042, R044, R050, and R064 contains a `SWRtimes`

field with a number of human-identified “true” SWR events. Use this information to evaluate the effects of using different filter types and settings in the above example, in terms of detection performance.

★ A common application of filtering in the early stages of data analysis is artifact removal. The FieldTrip toolbox contains many tools for the detection and removal of such artifacts, such as eyeblinks in EEG data. Following the FieldTrip tutorial, use the FieldTrip tools on your own data, and comment on the results.

★ Following the above example of obtaining instantaneous signal power using filtering, apply that procedure to some aspect of your own data, for instance to ask if power in a certain frequency range is related to some aspect of the task.

analysis/course-w16/week6.txt · Last modified: 2018/07/07 10:19 (external edit)

Except where otherwise noted, content on this wiki is licensed under the following license: CC Attribution-Share Alike 4.0 International

## Discussion

tadalafil dosage https://tadalafilgenc.com/ order tadalafil <a href=“https://tadalafilgenc.com/#”>generic tadalafil united states</a>

tadalafil daily use https://pulmoprestadalafil.com/ tadalafil pills 20mg <a href=“https://pulmoprestadalafil.com/#”>tadalafil 40 mg daily</a>

tadalafil generic https://extratadalafill.com/ tadalafil 30 mg <a href=“https://extratadalafill.com/#”>generic tadalafil united states</a>

tadalafil dosage https://superactivetadalafil.com/ generic tadalafil united states <a href=“https://superactivetadalafil.com/#”>tadalafil generic</a>

tadalafil daily use https://nextadalafil.com/ tadalis sx <a href=“https://nextadalafil.com/#”>buy tadalafil</a>

I was pretty pleased to uncover this site. I need to to thank you for your time for this particularly wonderful read!! I definitely appreciated every part of it and I have you saved to fav to see new information in your web site.

Please Visit My homepage ➤ https://www.yasul.top

Nice article. I like the part where you mentioned that a good comment is one where I have to pay attention to the article. However, I am not sure where you were going with that concept. Can you explain it to me further? The part that I did not like was in order to have a good comment on the blog post, I have to point out what I liked about your post. What if I did not like the blogpost. Can you explain it to me as well?

https://www.ophunter.net

Anyways, should you have any recommendations or tips for new blog owners please share. I understand this is off subject however I just had to ask. Cheers!

https://www.massage.blue

Howdy superb website! Does running a blog similar to this require a great deal of work? I’ve absolutely no understanding of coding however I had been hoping to start my own blog soon.

https://www.gunma.top

You made some really good points there. I looked on the internet for more info about the issue and found most individuals will go along with your views on this web site. <a href=“https://www.wooricasino.top” target=“_blank” title=“바카라사이트”>바카라사이트</a>

You made some decent points there. I looked on the internet for additional information about the issue and found most individuals will go along with your views on this website. <a href=“https://www.blackjacksite.top” target=“_blank” title=“카지노사이트”>카지노사이트</a>

Hi there! I simply wish to give you a huge thumbs up for your great info you have right here on this post. I’ll be coming back to your website for more soon. <a href=“https://www.slotmachine777.site” target=“_blank” title=“슬롯머신사이트”>슬롯머신사이트</a>

<a href=“https://www.texasholdemsite.info” target=“_blank” title=“텍사스홀덤”>텍사스홀덤</a> Pretty! This has been a really wonderful article. Thanks for providing this information.

This was an extremely nice post. Taking a few minutes and actual effort to generate a top notch article. https://www.casinosite777.info

Thank you for sharing this information. I read your blog and I can't stop my self to read your full blog. Again Thanks and Best of luck to your next Blog in future. https://www.baccaratsite.top

Nice article, I agree with this. https://www.sportstoto.zone

Thank you for sharing this useful article. Keep it up! Regards! https://www.baccaratsite.biz

“Thanks for your marvelous posting! I actually enjoyed reading it, you could be a great author.The jackets that we sell are replicas of the coats worn by top television celebrities because it is a growing trend to copy them when it comes to fashion. These celebrities have really become the trendsetters. This leisure was hitherto in reach of only the rich and the rest could only dream about it. But now these <a href=“https://www.saleonleather.com/product/men-black-jacket-with-white-strips/”>men black jacket with white strips</a> are available for all people who want to buy them because of our affordable prices. So we welcome you to come and buy celebrity jackets of excellent quality and know more about us and our products!

”

New Email List of LinkBio Users. Sell your products or services directly with cold email marketing to Instagram users that uses LinkBio in their profiles Download it from lead generation business salary“>”>“>”>

New Email List of LinkBio Users. Sell your products or services directly with cold email marketing to Instagram users that uses LinkBio in their profiles Download it from lead generation business salary“>”>“>”>

It's a pity you don't have a donate button! I'd certainly donate to this superb blog! I suppose for now i'll settle for book-marking and adding your RSS feed to my Google account. I look forward to new updates and will talk about this blog with my Facebook group. Chat soon! https://www.daum119.com

우리카지노77은 우리카지노 계열 중 가장 인기가 많은 메리트카지노,샌즈카지노,퍼스트카지노,007카지노,코인카지노,더존카지노를 추천하며 바카라사이트 소개 및<a href=“https://wooricasino77.com/”> 바카라사이트 </a>.

온카,온라인카지노,카지노커뮤니티,토토커뮤니티,토토사이트,놀이터,먹튀사이트,토토먹튀

<a href=“http://safezon88.com”>온라인 카지노 커뮤니티</a>